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The stability of equilibrium positions of Hamiltonian systems with one or two degrees 

of freedom in the presence of resonance is investigated. The conditions of instability, 
as well as those of Liapunov stability for cases in which only formal stability is known 

are derived. 

be a canonical system where the Hamiltonian .R’is analytic with respect to x, y in the 

neighborhood of the origin of coordinates 

H = 2 Hk (x1 y, t)t ffk = 2 avlv, (t) $!f’, au,“. (t + 2n) = &J,v~ (t) 
k=2 vl+v,=k 

Let us assume that the linearized system is stable and the characteristic indexes 1_ih 
are such, that kh is not an integer for k = 1, 2,... , 2% Then with a suitable choice 
of variables 2, $j the Hamiltonian can be written in the formlf] 

H = hr + c@ + , . . + Car* + ff’ (5, Yt t) (2r = 2* + y”) (*.z) 

Here H’ = 0 (m+‘/s) is an analytic function of 5, y. If among the constants es, 

es, -*-, C, there is one distinct from zero, the equilibrium position X = y = 0 is 

stable @, 33. 
If however kl. is an integer, the Hamiltonian cannot be, generally speaking, reduced 

to the form (1.2), and the equilibrium position may be unstable. In this paper we con- 

sider the problem of stability in the presence of resonance, when for k > 3 the quantity 
kh is an integer. 

The fundamental result of this investigation is tbe confirmation of stability (with cer- 
tain inequality satisfied) in cases of resonance of an even order (k is an even number). 
Confirmation of instability in one form or another was obtained earlier in [4- 81. 

The stability of equilibrium position of an autonomous Hamilton system with two 
degrees of freedom, when the ratio of frequencies of the linearized system is equal to 
three, is considered in Sect. 6. 

2. Let us investigate the stabiliq of the equilibrium position of system (1. I) in the 
region of stability of the linear approximation system. This implies that 2h is not an 
integer. Further calculations require to find a real, canonical,%r-periodic with respect 
to t, and linear with respect to z, y, transformation of the Hamiltonian by which its 
quadratic part becomes of the form Hs = ‘/s a (q* $ p”). We will show how to 
obtain this transformation. 
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The linearized system (1.1) has two linearly independent solutions 

&j = cpj (t) eixjt , /3j = *j(f) eixj’ 

ii = 11 2) P-0 

where ill = - li,= - A, and the periodic functions 94, $j satis differential 
equations (2.2) 

dqrjdt = - iajCpj + $,Tj + 2ao&j, d+jidt I= - ih#j - 2a,,qj - a,,gi 

If the initial values vr, $r are complex conjugates of the initial values 9s and $s, 
then, by virtue of the homogenei~ of system (2. 21, these functions are complex congu- 

gates for all t. Hence it can be set 

9 1 = zr + izs, $i = .z3 + iz4, ‘ps = (c),, $s = $i 

where zi are real periodic functions of t. According to (2.2) they satisfy the following 

system of equations: 

dz,/dt = - hz, + a,,~, + 2aaaz3, dz~/dt = h.zl i- alIz2 $_ 2%~~ 

dz,/dt = - ~z, - 2a,,z, - allz3, dz,idt = h2, - 2a,,z, - hz, (2.3) 

It is readily seen that the linearized system (1.1) has two independent integrals 

fu -j- iv)e-ihl, (u - iu)eik! (u = Z.&X - z,y, u = z&r - %?I) (2.4) 

We introduce new variables 4 and p defined by functions 4 = v and p = 18.. This 
transformation is canonical, since functions zj satisfy the relation 

zazs - z1z4 = const (2.5) 

which can be readily verified by a direct check. 
let us choose the initial values of functions Zj so that the initial values of functions 

rp,, 41~ and c&, 2t)s be complex conjugates, and the constant in (2.5) be equal unity, 
let us denote by ~1 (t), yj ft) (i L- 1, 2) the solutions of the linearized system 

( 1.1) which satisfy conditions 

Xl(O) = y,(O) = 1, G(O) = Yt(O) =o 

The initial values of functions cpj, qj are then found from the system of equations 

iz, (2n) -e i2x”] qj (0) + 22 (2Z-C) $j (0) z 0 (2.6) 

3, (23X) v j (0) + I&l2 (2n) - eizXhjl $j (0) = 0 

The determinants of these systems are equal to zero. since the eizZi.zi are the multi- 

pliers of the linearized system (1.1). The solutions of system (2 6) can be written as 

Cpj (0) =‘- 2% (21t$ Cj, *j(O) = IX, (23%) - einrrAj]cj (2.7) 

where cj are arbitrary constants. Let these be real and equal to c.Then ‘pl (0) = I& (O), 

91(O) = @2 VW 

From (2.7) we obtain the initial values of function zj 

zi (0) = - 22 (2n) c, 2% (0) =-: 0 

zg (0) = 1x1 (2Z) - cos 23&l c, 2, (0) = c. sin 2nh (2.8) 

Setting the constant in (2.5) equal unity, we obtain for the determination of c the 

condition c2z2 (2n) sin 2nk = 1 (2.91 

The quantity za (Zat) sin Z rtt3L # 0, since the stability is investigated in the region 
of stability of the linearized system (1.1). By choosing the sign of h (which so far has 
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not been defined) this quantity can be made positive. Hence Eq. (2. 9) has always a real 
solution for c. 

The sought canonical transformation has thus been found, and the Hamiltonian in terms 

of variables q, p is 

H = l/G (q2 + P’) 1- i HI, (4, p, t) (2.10) 
fi=3 

where 

HI, = 2 h,,,, (t) q”pv’ = 2 av,v, (t) (GP - w)y1 (GP - WI)“’ 
vl+v.=k vl++=k 

9. To investigate the stability we further transform the Hamiltonian (2.10). Using 
the periodic generating function of t of period %I, we introduce the canonical varia- 

bles q*, p* 
s = qp” + S(3) Fz qp* + 2 S”,“, (t) q”lp*“* 

VI+%=3 

It is not difficult to show that, if 33, is not an integer, the third power terms in thenew 
Hamiltonian H* (q*, p *, t) can be completely supressed. For this the &r-periodic func- 
tions sV1,s (t) must be such that 

S30 = 2 (u30’ fU211), S 03 = 2 (~30’ - 5;) 

S ,I% = 2 (%I’ - 3%0’), $1 = - 2 (3Qo’ + 411) (3.1) 
U y,y2 = f (t) sin 3L (Y, - YJ t + g (t) cos h (v2 - vl) t 

= f (t) cos h (Y, 

;;;; = ‘/2 ctg 7th ( 

- vl) t - g (t) sin A. (Y, - vl) t 

vz - vr) J, W) + l/2 J, W) - J, (t) (3.2) 

g (t) = - l/2 ctg d (~2 - ~1) J, (2n) + l/2 J, (2n) - J1 (t) 

J1 (t) = 5 [ ilyt (1) cos h (v2 - vl) II‘ - u:,~, (2) sin 3L (v2 - vi) z] dx 
0 

J2 (t) = c [ u,~,,, (5) sin h (v2 - vr) x -j- u:,~, (z) cos h (v2 - vr) s] dz 
0 

U”30 = %I (h30 - h,), vn30 = l/8 (ho3 - h21) (3.3) 
Ud21 = ‘/* (3h30 + h2)9 v”21 = - Ys (3ho3 + &I) 

With such choice of 6’(s) the fourth power terms in H* are computed by the formula 

HI* (q, p*, t) = H, + l/& 

When 3h = m (m is an integer), it is not possible to completely suppress H3*. In 
this case the Hamiltonian H* can be reduced to 
H* = rj2h (q*s + Pan) + 2U,,* (q*3 - 3q*p*2) + 2u3,* (Pan - 3p*q*2) + 

where + H’(q%, p*, t) (3.5) 

ugo * = z3o cos mt - y,, sin mt, 7730 * = 530 sin mt + y,, cos mt 
2x 

530 = &- s (~~30” cosmt + v3/sin mt) dt 
0 

2n 
1 

Y30 = 2n c (v30” cos mt - 2~~0” sin mt) dt 
;, 

(3.6) 
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The function H’has a period of 2a-c with respect to t , and H’ = o((l q 1 f 1 p I)“). 

Theorem 3.1. If xss2 $ yss2 + 0, the equilibrium position is unstable. 

Proof. Let us make a substitute of variables 

Q* = VZ sin (At + cp - 0), p* = l/z; co9 (k + cp - 9) 

sin 39 = x30 (zso8 + ysoa)-“‘, co9 38 = y,, (& + y3c?)-“z 

In terms of variables r, rp the Hamiltonian (3.5) becomes 

H = 4 ~2(5s0~ + yao2) r 1/p cos 3~ + 0 (r2) (3.7) 

Let us consider the Liapunov function 

V= rJGsin3q (3.8) 

Its derivative by virtue of the equation of motion with the Hamiltonian (3.7) is 

dV / dt = 18 1/2 @so2 + ysoa) P + 0 (r”“) (3.9) 

Since V is an alternating function, and dV / dt is positive definite in the neighborhood 

of the coordinate origin, the equilibrium position is, according to Liapunov’s instability 

theorem 191. unstable. 

4. If 3h is not an integer, the Hamiltonian expressed in terms of variables q*, p* 

is of the form 
H* = Ha* + H4* + . . . 

where H4* is computed by the formulas (3.1)-(3.4). bet 4h = m. Substituting the 
variables q*, p* + q”, p’ with the generating function 5’ = q*p” f S(4), we can 
simplify the fourth degree terms of the new Hamiltonian which, as shown by calculations, 
is of the form 

H = l/& (q”’ + ~“9 + l14c2 (q”’ + p“*)” + udo* (q” - 6q”po* + p”‘) - 

- k4o*q”p” (4” - p”‘) + Ho (q”, p’=, t) (4.1) 

where function H”=O ((I q” 1 i- 1 p” I)“) has a period of 2n with respect to t. The 
following notation was introduced in (4.1) 

c2 = &‘j (3h4$ f lz,z* f 3&4*) dt 

0 

u4 0 *=x40 cos mt - y,, sin mt, v40 * = y,, cos mt + x4o sin mt 

1 5( x40 = z;i- u.~~” cos mt + vqo” sin mt) dt 

0 
zn. 

y40= & 
s 

iv40V cos mt - Use” sin mt) dt (4.2) 

u40 ” = l/g (h40* - fzz;* + ho,*), v40” = l/e (ha* - ha*) 

If x40 and Y40 are not simultaneously zero. we can pass to the variables r, cp by 
using tormulas similar to those of the previous Section. We obtain 

H = P (c, + b, cos 49) + H” (r, cp, t) (4.3) 

where b, = 47, and the function H” = 0 (r’h) and is periodic with 
respect to cp and t with periods 2n and 8~ , respectively. 
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Theorem 4.1. If 1 c, 1 < b,, the equilibrium position is unstable, if 1 C2 I> h, 
the Liapunov stability holds, 

P r o o f. To prove the first statement of the Theorem we consider the Liapunov func- 
tion V = 9 sin 4~ (4.4) 

The function V is alternating in the neighborhood of the coordinate origin. For the 
derivative we obtain the expression 

dV / dt = 8r3 (I 2 + c2 COS 49) + 0 (q”) (4.5) 

When the inequality 1 ca I< b, is satisfied, function (4.5) is positive definite in a 
sufficiently small neighborh~ of the coordinate origin. Hence, the eq~~brium position 
is unstable. 

Now let I c 2 I > b,. It is not difficult to show that in this case in the system with the 
Hamiltonian h = 9 (ca + kS cos 4~) , r is a periodic, and rp a monotonic function of t. 

Let us make the canonical transformation, reducing h to variables: action Z-angle 
W DO]. These variables are related to r and ‘p by formulas 

(4.6) 

Here S is the generating function. The integral in (4.6) is computed for the condition 

ra (I?* + b, cos 49) = h (4.71 

Here h = h (Z) is an inverse function of sx 

Z tk) = &- \ rdrp (4.3) 
6 

Here r denotes the function r (cp, h), which is obtained from (4.7). 
We note that the signs of coefficients c2 and b, in (4.3) can be assumed to be the same. 

In fact, if this were not so, a change to the new angular variable ‘p - l/d fl would yield 
a Hamiltonian in which the signs of these coefficients would be the same. We introduce 
the notation ka = Zb, / (6, + c2). By virtue of the conditions of Theorem 4.1 the inequa- 
lities 0 < ~2 < 1 are satisfied. After simple calculations, from (4.6)-(4.8) we obtain 

&$ _-_ 4% F (%P, k) (4.9) 

where K and F are complete and incomplete elliptic integrals of the first kind and k 
is their modulus. From (4.6) and (4.9) we find the relatio~hip between the new and the 
old variables 

r =nZ 
C 
X(k)& cp=$am--_w a tk) 

(4.10) 

A further substitution of variables 

z = pap, W= Q, t= 4T 

makes it possible to write the transformed Hamiltonian (4.3) in the form 

H = $ZZ(‘) (P) + Pati’) (P, Q, T) + . . . (4.11) 

For 0 < P < P* function H is analytic in the region 

I Im Q, T I d P? I---<p<2+s 

where P*, p, 6 are certain small numbers, and has a period of 2n with respect to Q 
and T. The function #r in (4.11) is of the form 
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#Q L .Ti2 (h -I- 4 -- 
G(k) ” (4.12) 

Since d2H(o)/dPz + 0, the neighborhood of 1 < P $ 2 is according to [3] filled for 
small n to within a remainder of a small order of magnitude with invariant tori of the 

system with Hamiltonian (4.11). Consequently its trajectories, beginning sufficiently 
close to the coordinate origin, do not leave for all t the neighborhood of 0 < P < 2. 

Taking into account the relation between P and initial variables s, Y. we obtain the 

confirmation of stability of the equilibrium position z = !, = 0 . 

We note that when the inequality 1 cp 1 > 6, is satisfied. there exists a power series 
(possible divergent) which formally is the fixed sign integraf of system (1.1) [Il.]. In 

the problem considered here the Liapunov stability, according to Theorem 4.1, follows 

from the formal stability. 

6. tit the Hamiltonian (1.2) be such that ilk is not an integer for k = 1, 2,. . . , 2n, 
and the coefficients ca, cs,..., c, are zero. Then the question of stability is not derer- 

mined by terms of order 2n in the expansion of the Hamiltonian. 
Let us now assume that A. (2n+l) is an integer ; then the Hamiltonian (1.2) can be 

transformed into U 11 z LIT?1 11; cos (_3Q + 1) v f (p (,,jb’ 1) fn z Con%.) (:,*l? 

With the use of the Liapunov function 

1/ = r+!l t/7 sin (2n -t_ 1) ip (Ft.?) 

it is easy to prove that for a j. 0 the equilibrium position is unstable. 

Let furthermore either a=O, or hk not be an integer for k= 1,2,. . . , 2n -+ 1, 
while 2h (n i_ 1) is an integer; then the Hamiltonian reduces to the form 

H= r”+l [C + b COS 2 (??z -/- l)ql + @-‘1+3’s) (5.3) 

where c and b are constant coefficients. For 1 b 1 >, 1 c 1 the equilibrium position is 

unstable. This is proved by using the Liapunov function 

v = rn7r sin 2 (n -/- 1) cp (5.4) 

If, however, 1 b 1 ( 1 c 1, then according to Liapunov, the equilibrium position is 
stabIe. To prove this, we use the canonical transformation F, cp --+ 1, w and the gene- 
rating function ++I> ‘p 

5 
du 

nt1 

k2 = $-j (5.5) 
0 

ntvl - k2 sins a 

The signs of b and c can be assumed to be the same, hence 0 < ks < 1. In (5.5) 
the following notation was used x’s 

&+I = 
s 

da 

0 
($_ /@sin2 a)1 itn+l) 

In terms of new variables the Hamiltonian is of the form 

HE + 
( ) 

n+l (b + c) + r (I, W, t) 
nh 

where the function r = 0 (m+““) and is periodic with respect to Wand t. 

Further proof is reduced to applying the results given in [3] as has been done in Sect. 4. 

6. Let us now examine the stabifity of equi~brium position of the autonomous Hamil- 
tonian system with two degrees of freedom. Let us assume that the frequencies of the 

linear approximation are not zero and are connected by the relation ol = 3~s and 
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that the quadratic part in the expansion of the Hamiltonian is not of fixed sign. With a 
suitable choice of variables qj, pj (j = 1,2) the Hamiltonian can be written in the 

form 

H = tilrl - 02r2 + czor12 + cllrlr2 + c0!2r~~ + 

+ H’(qj, Pj) 

where H’is an analytic function of Qj, PI 

H’ = 0 ((rl + r2) “b) 

br,lG cash + 39,) + 
(6.1) 

qj = 1/C& sin cpj, pj = Jf27cos rpj 

we introduce the notation 

a, = $0 + 3c,, + gco2, b, = 3Jf/3b 

It is shown in [12, 131 that, if 1 al 1 < 1 b, I, the equilibrium position is unstable, 
while in the case of I a, I > 1 b, I a f ormal stability occurs. Let us show that the Liapu- 

nov stability follows from formal stability. 
Using the integral H = h = const, we reduce the system with two degrees of free- 

dom to a system with one degree of freedom, but with a &r-periodic dependence of the 

new Hamiltonian on the new independent variable. Since the motion is considered to 
be in a sufficiently small neighborhood of the coordinate origin, it can be assumed that 
rj - E (0 ( E <( 1). kt the trajectory begin sufficiently close to the coordinate 

origin, so that h - I+, then, solving the equation H = h for r2,we obtain 

r2 = - m. (rl, (~1, CpJ - ml (5, c7 Tzl h) 
where 

CD0 = - 3r, - o2-’ [a, + b, cos (cpl + 3op,)l r12 

Function @i = 0 (rl’/t) has a period of 2n with respect to ‘p1 and to the new inde- 

pendent variable tpz. If angle cp = ‘pi -I- 39, is substituted for ‘pi the Hamiltonian 0 

of the obtained system with one degree of freedom is of the form 

CD z==- w2-l (ai + b, cos cp) ri2 + R (pi, cp, (pz7 h) 

The signs of a, and b, can be assumed to be the same. Let us change the variables 

r,, cp 3 1, W using the generating function 

S=&F(cp/2,k)(k”= b”<l) 
al+ bl 

(6.2) 

where K and F are elliptic integrals and k is their modulus. The Hamiltonian @ 

becomes 
a, = _ na(al + bl) 

402KS (Jq 1’ + R’ (I, W, ‘pz, h) (6.3) 

The function R’ = 0 (I’z) has a period of 2n with respect to Wand ‘p2 and is ana- 
lytic with respect to all variables in the region 

0 < 61 f I < 62, VI<&, I Im K vz I -c 64 

where 6i are certain small real numbers. By applying to the system with Hamilton- 
ian (6.3) the results of the analysis presented in [S] it can be readily shown that for 
every admissible value of h in a sufficiently small neighborhood of the coordinate ori- 
gin there exist invariant tori. From this follows the stability of the equilibrium position 
Qj = pj = 0. 
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In this paper a new class of generalized mixed strategies of players is presented, related 
to the problem of bringing a motion, under a control involving conflict,to a specified set 
under a phase restriction. This class of problems is so wide that it includes strategies 
which give saddle-point type situations in typical differential games. The contents of 
this paper are related to the problems discussed in [l-4] and the discussions are based 
on the extremal construction introduced in [S-7]. 

1. Consider first a motion under control involving conflict described by 

dx/dt = f (t, x, u, v), x it,] = x0 (1-l) 

where x is the n-dimensional phase vector of the system, u and u are the control force 


